OKLAHOMASTATE UNIVERSTY sChOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems Fall 2002 Midterm Exam \#2

DO ALL FIVE PROBLEMS

Name: \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Consider $A x=y$, where A is $m \times n$ and has rank m. Is $\left(A^{T} A\right)^{-1} A^{T} y$ a solution? If not, under what condition will it be a solution? Is $A^{T}\left(A A^{T}\right)^{-1} y$ a solution?

Problem 2:

Consider the linear operator

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & 2 \\
0 & 0 & 0 & 1
\end{array}\right],
$$

determine its rank and nullity, then find a basis for the range space and the null space of the linear operator, A, respectively?

Problem 3:

Let V and W be vector space over the same field F and let $A: V \rightarrow W$ be a linear transformation. Show that A is a one-to-one mapping if and only if null space of $A, N(A)=\{0\}$.

Problem 4:

Consider the set of all 2×2 matrices in the form

$$
\left[\begin{array}{cc}
y & x \\
x & -y
\end{array}\right]
$$

where x and y are arbitrary real numbers (i.e., $x, y \in \mathfrak{R}$). Does the set with the usual definitions of matrix addition and multiplication form a field? If not, show why? If yes, what are the zero and unity elements?

Problem 5:

Show if the following sets
$\left[\begin{array}{c}2 \\ 1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}1 \\ 1 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ -1 \\ -1\end{array}\right]$
span the same subspace V of $\left(\mathfrak{R}^{4}, \mathfrak{R}\right)$.

