OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems Fall 2002 Midterm Exam #2

DO ALL FIVE PROBLEMS

Name : ______

Student ID: _____

E-Mail Address:

Problem 1:

Consider Ax = y, where A is $m \times n$ and has rank m. Is $(A^T A)^{-1} A^T y$ a solution? If not, under what condition will it be a solution? Is $A^T (AA^T)^{-1} y$ a solution?

<u>Problem 2</u>: Consider the linear operator

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

determine its rank and nullity, then find a basis for the range space and the null space of the linear operator, A, respectively?

<u>Problem 3</u>: Let *V* and *W* be vector space over the same field *F* and let $A: V \to W$ be a linear transformation. Show that *A* is a one-to-one mapping if and only if null space of *A*, $N(A) = \{0\}$.

Problem 4:

Consider the set of all 2×2 matrices in the form

 $\begin{bmatrix} y & x \\ x & -y \end{bmatrix}$

where x and y are arbitrary real numbers (i.e., $x, y \in \Re$). Does the set with the usual definitions of matrix addition and multiplication form a field ? If not, show why ? If yes, what are the zero and unity elements ?

<u>Problem 5</u>: Show if the following sets

$$\begin{bmatrix} 2 \\ 1 \\ -2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -1 \\ 2 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 1 \\ -2 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

span the same subspace V of $(\mathfrak{R}^4, \mathfrak{R})$.